Phone: 612-624-5551
unews@umn.edu
24-hr number: 612-293-0831

Advanced Search

News Release.

News Release

Asotacarica300

The Asota caricae moth has a two-inch wingspan and a 2,500 mile distribution. Image courtesy of Lauren Helgen, Smithsonian Institution.

Hidden habits and movements of insect pests revealed by DNA barcoding

Media Note: For a high-resolution image of the Asota caricae moth referenced in the article, visit http://bit.ly/aB4PEb. The moth has a two-inch wingspan and a 2,500 mile distribution. Image is courtesy of Lauren Helgen, Smithsonian Institution. For a copy of the research paper, contact Jeff Falk at jfalk@umn.edu.

Contacts: Peggy Rinard, College of Biological Sciences, rinar001@umn.edu, (612) 624-0774
Jeff Falk, University News Service, jfalk@umn.edu, (612) 626-1720

MINNEAPOLIS / ST. PAUL (03/09/2010) —University of Minnesota researcher George Weiblen and colleagues have found a faster way to study the spread and diet of insect pests.

Using a technique called DNA barcoding, which involves the identification of species from a short DNA sequence, Weiblen and an international team of researchers studied populations of numerous moth and butterfly species across Papua New Guinea. DNA barcodes showed that migratory patterns and caterpillar diets are very dynamic. In one case, a tiny moth that is distributed from Taiwan to Australia, has recently crossed thousands of miles of Pacific Ocean.   

The research, "Population genetics of ecological communities with DNA barcodes: An example from New Guinea Lepidoptera," was published in the Early Online edition of Proceedings of the National Academy of Sciences on March 1.

To view the complete article, visit http://www.pnas.org/content/early/2010/03/01/0913084107.full.pdf+html.

“DNA barcoding was developed for rapid identification but it also provides information about the habits and history of species,” Weiblen says. He says this technique is of particular interest in Papua New Guinea, a country slightly larger in size than California with an insect diversity more than three times that of the United States. “New Guinea is one of those special places on Earth where we know very little about its biodiversity. This rich natural environment is increasingly threatened by economic development, and I’m concerned about how much biodiversity might be lost before we’ve had a chance to understand it. DNA barcoding helps to increase the pace of discovery.”

Weiblen says that DNA barcoding can play an important role in studying the arrival of invasive species, such as the emerald ash borer, a species recently introduced from Asia. “We need to understand the genetic history of invasion in order to combat the pests that threaten trees and crops,” Weiblen says. “DNA barcoding can pinpoint the geographic source of an invading species and measure the distances over which pest species can travel.”

Weiblen is an associate professor of plant biology in the university’s College of Biological Sciences and a curator of plants in the Bell Museum, a unit of the College of Food, Agricultural and Natural Resource Sciences. He has studied plant and insect diversity of Papua New Guinea’s forests for the past 17 years. Weiblen’s colleagues in the DNA barcoding study were researchers from the Smithsonian Institution, the University of Guelph in Ontario, Canada, the University of South Bohemia, Czech Republic, as well as the University of Minnesota.  

Tags: College of Biological Sciences

Share This Story

Multimedia

Related Links

College of Biological Sciences homepage

Click here for a full copy of the article